The Complexity of Weighted Boolean #CSP

نویسندگان

  • Martin E. Dyer
  • Leslie Ann Goldberg
  • Mark Jerrum
چکیده

This paper gives a dichotomy theorem for the complexity of computing the partition function of an instance of a weighted Boolean constraint satisfaction problem. The problem is parameterised by a finite set F of non-negative functions that may be used to assign weights to the configurations (feasible solutions) of a problem instance. Classical constraint satisfaction problems correspond to the special case of 0,1-valued functions. We show that computing the partition function, i.e. the sum of the weights of all configurations, is FP-complete unless either (1) every function in F is of “product type”, or (2) every function in F is “pure affine”. In the remaining cases, computing the partition function is in P.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Complexity of Weighted Boolean #CSP Modulo k

We prove a complexity dichotomy theorem for counting weighted Boolean CSP modulo k for any positive integer k > 1. This generalizes a theorem by Faben for the unweighted setting. In the weighted setting, there are new interesting tractable problems. We first prove a dichotomy theorem for the finite field case where k is a prime. It turns out that the dichotomy theorem for the finite field is ve...

متن کامل

The complexity of approximating conservative counting CSPs

We study the complexity of approximation for a weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, a classification is known for the Boolean domain. We give a classification for problems with general finite domain. We define weak log-modularity and weak log-supermodularity, and show that #CSP(F) is in FP if F is weakly log-m...

متن کامل

The complexity of complex weighted Boolean #CSP

We prove a complexity dichotomy theorem for the most general form of Boolean #CSP where every constraint function takes values in the complex number field C. This generalizes a theorem by Dyer, Goldberg and Jerrum [11] where each constraint function takes non-negative values. We first give a non-trivial tractable class of Boolean #CSP which was inspired by holographic reductions. The tractabili...

متن کامل

The Approximability of Three-valued MAX CSP

In the maximum constraint satisfaction problem (Max CSP), one is given a finite collection of (possibly weighted) constraints on overlapping sets of variables, and the goal is to assign values from a given domain to the variables so as to maximize the number (or the total weight, for the weighted case) of satisfied constraints. This problem is NP-hard in general, and, therefore, it is natural t...

متن کامل

A Trichotomy Theorem for the Approximate Counting of Complex-Weighted Bounded-Degree Boolean CSPs

We determine the computational complexity of approximately counting the total weight of variable assignments for every complex-weighted Boolean constraint satisfaction problem (or CSP) with any number of additional unary (i.e., arity 1) constraints, particularly, when degrees of input instances are bounded from above by a fixed constant. All degree-1 counting CSPs are obviously solvable in poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Comput.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2009